By Deborah Halber,
MIT News
Neuroscientists at the Picower Institute for Learning and Memory at MIT report in the June 7 early online edition of Science that they have identified for the first time a neuronal mechanism that helps us rapidly distinguish similar, yet distinct, places. The discovery helps explain the sensation of déjà vu.
The work could lead to treatments for memory-related disorders, as well as for the confusion and disorientation that plague elderly individuals who have trouble distinguishing between separate but similar places and experiences.
Forming memories of places and contexts in which episodes occur engages a part of the brain called the hippocampus. Study co-author Susumu Tonegawa, Picower Professor of Biology and Neuroscience, and colleagues have been exploring how each of the three hippocampal subregions--the dentate gyrus, CA1 and CA3--contribute to different aspects of learning and memory.
Tonegawa, a Howard Hughes Medical Institute investigator and a frequent world traveler, described his own occasional experience of finding the airport in a new city uncannily familiar. This occurs, he said, because of the similarity of the modules--gates, chairs, ticket counters--that comprise airports worldwide. It is only by seeking out unique cues that the specific airport can be identified, he said. "In this study, we have revealed that learning in the dentate gyrus is crucial in rapidly recognizing and amplifying the small differences that make each place unique," Tonegawa said.
CLICK HERE TO READ THE FULL STORY
No comments:
Post a Comment